Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
نویسندگان
چکیده
The use of computer experiments and surrogate approximations (metamodels) introduces a source of uncertainty in simulation-based design that we term model interpolation uncertainty. Most existing approaches for treating interpolation uncertainty in computer experiments have been developed for deterministic optimization and are not applicable to design under uncertainty in which randomness is present in noise and/or design variables. Because the random noise and/or design variables are also inputs to the metamodel, the effects of metamodel interpolation uncertainty are not nearly as transparent as in deterministic optimization. In this work, a methodology is developed within a Bayesian framework for quantifying the impact of interpolation uncertainty on the robust design objective, under consideration of uncertain noise variables. By viewing the true response surface as a realization of a random process, as is common in kriging and other Bayesian analyses of computer experiments, we derive a closed-form analytical expression for a Bayesian prediction interval on the robust design objective function. This provides a simple, intuitively appealing tool for distinguishing the best design alternative and conducting more efficient computer experiments. We illustrate the proposed methodology with two robust design examples—a simple container design and an automotive engine piston design with more nonlinear response behavior and mixed continuous-discrete design variables. DOI: 10.1115/1.2204974
منابع مشابه
A Robust Reliable Closed Loop Supply Chain Network Design under Uncertainty: A Case Study in Equipment Training Centers
The aim of this paper is to propose a robust reliable bi-objective supply chain network design (SCND) model that is capable of controlling different kinds of uncertainties, concurrently. In this regard, stochastic bi-level scenario based programming approach which is used to model various scenarios related to strike of disruptions. The well-known method helps to overcome adverse effects of disr...
متن کاملA robust optimization model for distribution and evacuation in the disaster response phase
Natural disasters, such as earthquakes, affect thousands of people and can cause enormous financial loss. Therefore, an efficient response immediately following a natural disaster is vital to minimize the aforementioned negative effects. This research paper presents a network design model for humanitarian logistics which will assist in location and allocation decisions for multiple disaster per...
متن کاملModelling and Compensation of uncertain time-delays in networked control systems with plant uncertainty using an Improved RMPC Method
Control systems with digital communication between sensors, controllers and actuators are called as Networked Control Systems (NCSs). In general, NCSs encounter with some problems such as packet dropouts and network induced delays. When plant uncertainty is added to the aforementioned problems, the design of the robust controller that is able to guarantee the stability, becomes more complex. In...
متن کاملRobust Model for Networked Control System with Packet Loss
The Networked Control System in modern control widely uses to decrease the implementation cost and increasing the performance. NCS in addition to its advantages is inevitable. Nevertheless they suffer of some limitations and deficiencies. Packet loss is one of the main limitations which affect the control system in different conditions and finally may lead to system instability. For this reason...
متن کاملA Robust Model for a Dynamic Cellular Manufacturing System with Production Planning
In this paper, a robust optimization approach is proposed to design a dynamic cellular manufacturing system (DCMS) under uncertainty of processing time of products. In addition, a mathematical model considering cell formation, inter-cell design and production planning under a dynamic environment (i.e., product mix and demand are changed in each period) is presented. Therefore, reconfiguration b...
متن کاملRobust optimization of a mathematical model to design a dynamic cell formation problem considering labor utilization
Cell formation (CF) problem is one of the most important decision problems in designing a cellular manufacturing system includes grouping machines into machine cells and parts into part families. Several factors should be considered in a cell formation problem. In this work, robust optimization of a mathematical model of a dynamic cell formation problem integrating CF, production planning and w...
متن کامل